Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Engineered Allosteric Regulation of Protein Function.

blue LOV domains Review
J Mol Biol, 2 May 2022 DOI: 10.1016/j.jmb.2022.167620 Link to full text
Abstract: Allosteric regulation of proteins has been utilized to study various aspects of cell signaling, from unicellular events to organism-wide phenotypes. However, traditional methods of allosteric regulation, such as constitutively active mutants and inhibitors, lack tight spatiotemporal control. This often leads to unintended signaling consequences that interfere with data interpretation. To overcome these obstacles, researchers employed protein engineering approaches that enable tight control of protein function through allosteric mechanisms. These methods provide high specificity as well as spatial and temporal precision in regulation of protein activity in vitro and in vivo. In this review, we focus on the recent advancements in engineered allosteric regulation and discuss the various bioengineered allosteric techniques available now, from chimeric GPCRs to chemogenetic and optogenetic switches. We highlight the benefits and pitfalls of each of these techniques as well as areas in which future improvements can be made. Additionally, we provide a brief discussion on implementation of engineered allosteric regulation approaches, demonstrating that these tools can shed light on elusive biological events and have the potential to be utilized in precision medicine.
2.

Optogenetics: The Art of Illuminating Complex Signaling Pathways.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Physiology (Bethesda), 1 Jan 2021 DOI: 10.1152/physiol.00022.2020 Link to full text
Abstract: Dissection of cell signaling requires tools that can mimic spatiotemporal dynamics of individual pathways in living cells. Optogenetic methods enable manipulation of signaling processes with precise timing and local control. In this review, we describe recent optogenetic approaches for regulation of cell signaling, highlight their advantages and limitations, and discuss examples of their application.
3.

Light-Regulated allosteric switch enables temporal and subcellular control of enzyme activity.

blue VVD HEK293T HeLa Signaling cascade control
Elife, 23 Sep 2020 DOI: 10.7554/elife.60647 Link to full text
Abstract: Engineered allosteric regulation of protein activity provides significant advantages for the development of robust and broadly applicable tools. However, the application of allosteric switches in optogenetics has been scarce and suffers from critical limitations. Here, we report an optogenetic approach that utilizes an engineered Light-Regulated (LightR) allosteric switch module to achieve tight spatiotemporal control of enzymatic activity. Using the tyrosine kinase Src as a model, we demonstrate efficient regulation of the kinase and identify temporally distinct signaling responses ranging from seconds to minutes. LightR-Src off-kinetics can be tuned by modulating the LightR photoconversion cycle. A fast cycling variant enables the stimulation of transient pulses and local regulation of activity in a selected region of a cell. The design of the LightR module ensures broad applicability of the tool, as we demonstrate by achieving light-mediated regulation of Abl and bRaf kinases as well as Cre recombinase.
Submit a new publication to our database